
STEP BY STEP SMART-SRT MANUAL FOR RPi

Prepare everything you need

- Download the SmartSRT Control installer from https://www.todostreaming.eu/es/download.html
and install it (Windows 7 or higher). You will need NET Framework 4.6.1 that will be automatically
installed in your system if you don’t have it yet.
- Prepare two Raspberry Pi with the latest software you may download from our Download area on
our website http://www.todostreaming.e u / . The sender and the receiver.
- Preparare the encoder we are gonna use as video source. You may use any streaming software on
RTMP (FMLE, Wirecast, OBStudio, Vmix), but you can also use a hardware encoder based on
Hi3516A, such as URay UHE265-1-Mini with an HDMI input, or URay USE265-1-Mini with an
SDI one. On sale at Aliexpress for about 240 USD.

Raspberry Pi being the sender, must be in the same local network as the encoder.

We register on the service SmartSRT

You can ask for a free DEMO to sales@todostreaming.es
We will give you the folowing access data:
- Server Num ID.- An integer number that says which SmartSRT server will be used. (ie: 1)
- E-mail.- Used in the Log In process to your account. (ie: user@gmail.com)
- Password.- Used to enter your account. (ie: 12345)

Configure the sender side

With everything necessary installed, connected to the network and plugged into the electricity, we
will start with the configuration on the sender side.

1) Launch the SmartSRT Control app.

A completely empty window will appear.

Click on “Connect” menu, and then “Server SmartSRT”. Fill in the log in data.

1

http://www.todostreaming.es/
mailto:sales@todostreaming.es
http://www.todostreaming.es/
http://www.todostreaming.es/

The window will be filled by several blocks:

If we log in correctly, and have a direct connection to the Server, a green message will appear in the
lower status bar indicating it. Otherwise a message will appear in red with the error.

2) Register the sender device

In the block with the heading "Device List", in the upper right part, there is an icon in the form of a
black circle and a white cross inside. If we place the mouse cursor over it, a label appears with its
"Add a New Sender" function. Click on it, and a popup window appears to fill in the sender data.

2

Put the easier name to remind. You can change it at any moment. The new registered device will
appear in the Device List.

If we place the mouse cursor over the different elements, a message will appear that identifies what
it is, and if the cursor changes shape to a hand, it will indicate that this element is an active button,
which allows to change things on that device.

We will describe them from left to right, passing the mouse cursor over them:
- Copy encoder smart url: It appears when you pass over the name of the device. It's an active
button, if we click on it, does not seem to do anything. It will copy to the clipboard the smart url
address that we will copy in the Raspberry Pi that will act as a sender.
- Buffer delay: It indicates the maximum milliseconds of delay in this connection.
- Time connected: It says the uninterrupted time the device is connected to the SmartSRT server. In
days, hours, minutes and seconds (ie: 3d:21h:34m:15s).
- Bitrate in Kbps: Shows the bitrate calculated by the local multiplexer. It is an orientative and
inaccurate measure, which with the minutes adjusts to its real value.
- Activate/Deactivate device: This element is an active button, when it is a green check icon, allows
us to deactivate the device, and in the form of a red cross, it allows us to re-activate it. Before
changing, a pop-up window will ask if we are sure to do it. A disabled device can not connect to the
SmartSRT server while is in that state, this can be used to control the access of each device to the
distribution network in real time. If we deactivate a sender, all receivers connected to it will also be
deactivated.
- Connected/disconnected device: A bulb that turns on or off, this indicator is very clear about the
status of the sending or receiving equipment at all times.
- Delete device: It is an active button that may erase a device in the network. The erasure is
definitive, so a window will appear to confirm our delete intention. If we delete a sender that has
receivers, all the receivers assigned to it will also be permanently deleted. Handle this button with
care. It is preferable to use the disable button explained above, to regretting and reconfiguring the
deleted computers from scratch, since smart URLs are generated randomly, and never are the same.
- Edit device: It is an active button that shows a window where you can edit the status of the
equipment and its name. You can change these things at any time whenever you want.
- Add a New Receiver: It is an active button in the form of a circle with an internal black cross,
which only appears to the right of the senders, and allows us to register receivers that will connect
to this sender. The window and registration process is the same as that of the receiver. Let's click on
it, and we will add 2 receivers to this emitter.

3

At the end of the process you will have something like this.

You can add senders and receivers, according to your needs and your distribution network. The
sender will appear first and below all its associated receivers. At a glance we can control all of them
in real time.

You can add, change and remove network elements in production at your own will.

3) Configure the sender Raspberry Pi.

Using our favorite web browser, we can enter the Raspberry Pi control panel as described in your
software manual, which you can download from our website. Enter the LAN tab where you will
focus on the 2 lower fields.

In Smart URL (upload) field paste the clipboard content of “encoder smart url”, that copied on
clicking over the sender device name in the Device List in the SmartSRT Control.

The content in the Video Source URL field, will depend on the encoder that we are gonna use as a
streaming source.

A) Encoder Hi3516A option.

Let's assume that we leave the factory IP address that is 192.168.1.168, and that we have configured
it to send on HTTP. We will see the details in a specific section about it.
This would be the Video Source URL field content.

4

B) RTMP software option.

For this option let’s clicj on button RTMP in. We will automatically generate the RTMP URL to
use. In our example it would be something like this.

Either one option or the other, we can press the Save button. The sender will be activated, and
ready to transmit once the encoder is started. Let's configure the encoder then.

4) Configure the encoder.

Hi3516A encoder dashboard.

Using your favourite web browser, get into the dashboard, in our example http://192.168.1.168

This is the configuration that we like the most for a 1080i50 H.264 source (we highlight in red the
values to be adjusted):

Panel Encoder- Main stream:

5

http://192.168.1.168/

The value of FPS is automatically detected by the encoder from the video source. We recommend a
GOP value double the FPS, for a good quality. For a 1080i50 sources we recommend 4000 kbps fot
the bitrate, and CBR for bitrate control.

Audio Panel:

Advanced Panel:

6

Deinterlaced = Both, makes that both video fields are captured in their original order.
Qpmin and Qpmax will restrict the quality of the final compression.

With these setup, your local broadcast could be received at URL http://192.168.1.168/0.ts that we
used on step 3 of A option, to configure the sender Raspberry Pi.

Once the Raspberry Pi receives signal from the local encoder, it will negotiate the connection to the
SmartSRT server, the AES encription keyword to use and will start sending the stream. In the
SmartSRT Control we will see something like this.

The line corresponding to the sender begins to update every second the values of the connected
time, the bitrate and also the value of the buffer delay used. In addition, the light bulb on tells us
that said device is connected and sending data.

5) Configure the receiver

On step 2, when we built the distribution network, we saw that clicking on the device name, the
SmartSRT URL of this device is copied to the clipboard.

This is the directly you are gonna paste in the receiving Raspberry Pi. In the Streaming URL on
the Player tab.

Once you finished the configuration, press Save button, and then Play. You will see in the List of
Devices of the SmartSRT Control, how numbers in the connected device change.

7

http://192.168.1.168/0.ts

Latency, buffers and stability

It is important to know how parameters determine the total latency of each receiver with respect to
the original signal, and how they also influence stability

The SRT is the protocol used by all the devices that connect to the SmartSRT server through the
public Internet. This protocol, although it is based on UDP, has an advanced mechanism to recover
lost packets, giving it a reliability similar to TCP.

By default, the system automatically calculates the delay buffers, for both the senders and the
receivers, and you can only change the Buffer Playback of the receiver as we have seen in the
previous section. Although this last value does not refer to the SRT transmission itself, but to the
adaptability of the receiver's Player to the fluctuations of the timestamps, due to sudden changes in
the PING (jittering). Very stable networks can use values of 300 ms, and less stable networks should
use values of 700 ms or higher. Although the Buffer Playback can be set to values of 5000 ms, with
SRT it is not necessary to exceed 1000 ms.

Suppose you work with a Hi3516A encoder, the total latency in a given received would be the sum
of the following factors:

- The Sender Buffer delay (appears in theSmart Controla app, List of Devices) (ie: 262ms)
- The Receiver Buffer delay (appears in the same site) (ie: 289ms)
- Playback Buffer on RPi (seen above) (ie: 300ms)
- Converting protocols + multiplexer at SmartSRT server = 200 ms.
- Latency of encoder (when compressing). Hi3516A hardware encoder has 300 ms.

262 ms + 289 ms + 300 ms + 200 ms + 300 ms = 1351 ms (1.35 seconds max)

So in our example the max latency on Receiver01 will be around 1.35 segundos. However in real
conditions when we did the example, the real delay was 1.10 seconds.

SRT is a low latency protocol, where the values of the buffer delay range from 50 ms to 5000 ms,
depending on the PING and the packet loss. But although the default system calculates these
buffers, there is a way to force them to a specific value, if for example we want to lower it, because
we do not care that artifacts appearing in the video from time to time, and we are interested in
having a lower latency, or if on the contrary we want to increase its value, because we are much
more interested in the stability of the long-term issue.

To force these values, it is necessary to change the whole number that appears at the end of the
Smart type URL, which by default is a 0 (automatic buffer).

In our example it was: smart1://IoYkkChsMKCyLkJH/0
So if we want to use a value of 50 ms, our URL would change to:
smart1://IoYkkChsMKCyLkJH/50

If we set a value outside the allowed range, between 50 and 5000, the system will set the limit
value.

Our implementation of SRT, ends the communication between 2 parties, only when there is no
transmission of any package for at least 3 seconds in a row. And when running on UDP, it only

8

depends on the buffers and network conditions to recover lost packets. In case of not being able to
do it, it will not drop the connection, but you will simply see artifacts in the reception.

In case of experiencing unwanted artifacts in reception, we recommend raising the buffer to twice
the value created automatically. Using a buffer twice the automatic, allows us to be immune to data
loss rates of up to 10%, conditions that would make a game over on the rest of streaming protocols.

Next we are going to expose an example PING table, together with buffer values and the final
maximum latency, as reference values.

PING (ms) Sender Buffer Receiver Buffer Player Buffer Max Latency

33 100 100 300 1.0 s

166 500 500 500 2.0 s

230 750 750 500 2.5 s

500 1500 1500 500 4.0 s

As a final observation, I would add that buffers within the same network are not related to each
other, so they do not need to be the same, since each device will be in different network conditions,
and at a different distance from the SmartSRT server. If all the receivers dependent on the same
sender experience artifacts, it is very possible that the problem comes from the connection of the
sender to the server, so the buffer of the sender is the one that we would have to be raised to avoid
this inconvenience.

TodoStreaming March 2019

9

